
Infill Optimization
for Additive Manufacturing

Rio Hall-Zazueta, Ellie Prince, Andrew Zerbe
CS361: Engineering Design Optimization (Stanford University)

Abstract

Generative design tools provide users with the ability to
generate optimal mechanical parts given loading con-
ditions, but existing software is closed-source, compli-
cated to use, and can ignore design intent. Here we
show initial development of a more robust and usable
method using truss-based modeling. We developed and
compared two potential optimization algorithms–a ge-
netic algorithm and a node replacement algorithm–that
utilize this method to generate mass-optimal infill struc-
tures for FDM 3D printing. Compared to grid infill, both
algorithms reduced strain energy by over 70% at the
same mass. The genetic algorithm also generated an ap-
proximate Pareto frontier, which a designer could use to
choose an appropriate balance of low weight and high
stiffness. Optimization of truss-based infill is shown to
be a powerful tool to improve the performance of 3D-
printed parts without additionally complicating the de-
sign process.

Problem
Generative design software is a capable tool for creating 3D
models, but is not often used outside of specific industrial
applications due to the fact it is closed-source, computation-
ally intensive (and thus time-intensive), and often difficult
to mold to one’s design intent (e.g. ensuring that holes are
supported or that the shape of the design is maintained by
setting excluded and preserved regions) (Nordin 2018).

3D printed infill is particularly suited to generative design.
By default, Fused Deposition Modeling (FDM) 3D printers
create sparse structures inside the solid shell of a printed
part to maintain its strength while reducing cost and print
time. The designer chooses the pattern and uniform density
of this infill, serving as a way to adjust the part’s strength-to-
mass ratio. However, many of these infill patterns are sim-
plistic; they do not take the part’s expected loading condi-
tions into account (Fig. 1). More advanced users may cre-
ate variable infill (often using manual workarounds such as
support blockers) to use different patterns (e.g. linear, grid,
honeycomb, etc.) and densities in different parts of the print,
but this process is labor-intensive and frequently requires the
designer to use different techniques for each part.

This work proposes generative design techniques to create
mass-optimal infill structures given a part and its expected

Figure 1: Infill patterns including linear (left), grid, (cen-
ter),and hexagonal/honeycomb (right) (Dey, 2019).

loading. Rather than parameterizing and optimizing existing
infill patterns, our method generates a set of load-bearing in-
fill elements that comprise an optimal pattern. This focus on
infill ensures that the overall object’s outer shape is main-
tainded during the optimization, which preserves design in-
tent wihtout requiring additional specification of the geome-
try. Because the part’s outer shape is constant, this also shifts
our focus from designing a pattern that is exactly optimal for
the load case, to improving the performance of existing infill
strategies, ideally while reducing computation time. Given
our limited time, we focused on creating 2D infill structures
as a proof of concept; however, the algorithms presented can
and should be generalized to 3D for real-world usage.

Literature Review
Many works have taken different approaches to investigating
and optimizing infill in additive manufacturing.

One common area of investigation is topology optimiza-
tion, an algorithmic process that finds efficient designs based
on a set of constraints by removing material from the de-
sign and keeping track of the number of connected compo-
nents/boundaries. In their 2019 paper, Garcı́a-Domı́nguez,
Claver, and Sebastián run topology optimization using
Rhinoceros ”Grasshopper” software, demonstrating how ex-
isting physics-based simulation libraries can prove useful in
this application (Garcı́a-Domı́nguez, Claver, and Sebastián
2019). In a 2022 paper, Liu et al. examine topology opti-
mization for prototyping a multimaterial-like compliant fin-
ger object by varying printing infill density, creating a com-
plex objective function based on mechanical properties and
then optimizing (Liu, Chen, and Yang 2022). They reference
that the traditional objective function minimizes ”strain en-
ergy” (SE) for rigid structures and minimizes ”mutual poten-
tial energy” (MPE) for compliant mechanisms. The authors



propose that a design can be approximated by varying the
values of infill densities in different portions of a 3D-printed
component–in short varying choice of regions of default in-
fill with different parameters, but still the same patterns.

Other literature focuses more on identifying design vari-
ables and optimal design than algorithms. In their 2019 ar-
ticle, Shmitt, Mehta, and Kim investigate additive manufac-
turing infill optimization for automotive components by run-
ning various trials and finding optima via experimental re-
sults (Schmitt, Mehta, and Kim 2020). They find that solid,
double dense, and triangular infill, all with eight contour lay-
ers, are optimal for component regions experiencing high
stress, moderate stress and low stress, respectively.

These works’ identifications of design variables, uses of
physics-based simulation libraries, and optimization strate-
gies show promise in infill optimization but also leave open
the opportunity to examine optimization of infill pattern it-
self rather than simply hyperparameters of default patterns.

Approach
Our approach can be split into two parts: evaluation and gen-
eration of candidates to be evaluated, and optimization of
candidates.

Evaluation and Generation of Candidates
Our goal was to create mass-optimal designs given loading
conditions. This meant evaluating mass and some proxy for
strength; in this work, we used strain energy (SE) because
of its established use in previous literature (Liu, Chen, and
Yang 2022). Because we are trying to optimize both mass
and strain energy, this is a multi-objective optimization prob-
lem, so we evaluate our optimized designs in the criterion
space to determine if they are Pareto-optimal (Kochenderfer
and Wheeler 2019).

Mass can be simply evaluated by determining the volume
of any pattern and multiplying by material density. Typi-
cally, FEA tools would be used to evaluate stress within
a model in response to loading and return SE. However,
these tools are computationally expensive, as they create
an exhaustive mesh of the solid object. We instead chose
to represent candidate designs as 2-dimensional truss struc-
tures, which can easily be evaluated with the Direct Stiff-
ness method. By constraining our designs to truss shapes,
we were likely to generate less mass-optimal designs than
a strategy such as topology optimization; however, trusses
are still well suited to act as support structures and evaluate
orders of magnitude faster. Additionally, rather than creat-
ing meshes for each design, which is time-consuming, each
design can be evaluated as a truss and then the final design
meshed for slicing and printing only at the end.

The printed shape optimized was a 2D square box with
side lengths of 50 millimeters (i.e. the cross-section of a
3D-printed 50-millimeter cube). ”Nodes” represented points
on the design at which ”elements,” or linking pieces of 3D-
printed material, intersected. To create trusses that are al-
ways stable without elements that intersect each other, we
first generated a 2D array of nodes, and then created a De-
launay triangulation to generate the elements that connect
them (sci 2023) (Fig. 2).

To generate 3D models for 3D printing from our 2D truss
representations, we developed a script utilizing CADQuery,
an open-source software package for CAD based on Python
code (cad 2015). Our CADQuery script was input a list of
element start and end points, and generated a union of cylin-
ders corresponding to each item on the list. This was then
exported from CADQuery in STL format.

Figure 2: Example of a randomly generated truss structure
with nodes (circular points) and elements (lines connecting
nodes).

Optimization Algorithms
Custom Iterative Replacement Algorithm
A custom “replacement algorithm” was created as an alter-
native to classic optimization strategies later used. For a cho-
sen number of iterations, the algorithm does the following:
• Locate the truss node with minimum utility (minimum

force sustained).
• Move this “minimal contributor” node to a new random

candidate location.
• Re-solve the truss with this new node, and measure a sum

of mass and strain energy (equation below).
• If this metric is lower than before the node was moved,

accept the new node location. If no improvement, retry
other random candidate locations for n more attempts, re-
turning the original node if no improvement even after n
attempts.
The final truss is returned in the form of the remaining

nodes and linking elements.

Non-Domination Genetic Algorithm
A second algorithm leverages genetic algorithms (GA).
These algorithms mimic the natural process of evolution
with a 5-step process (Kochenderfer and Wheeler 2019):

1. Generation of an initial population of candidate designs
2. Selection of sets of two parents based on objective func-

tion performance



3. Crossover of each set of parents, resulting in (on average)
better-performing child candidates than the previous gen-
eration

4. Mutation of child candidates, in order to encounter new
designs not present in the initial population

5. Repeat steps 2-4 for a specified number of iterations.

It is crucial to the success of a GA strategy that its candidate
representation and crossover methods maintain the structure
of the parent candidates; in other words, crossing over two
successful parents should tend to preserve the essence of
what made each parent perform well.

We have chosen to implement the GA strategy as follows.
Starting with a uniform grid of nodes and adjoining ele-
ments, each point is warped randomly within a small area
centered on its original location. Because nodes between
candidates correspond in terms of rough position, this is a
generalizable representation of each candidate. Some nodes
are deleted based on random probability (typically set to
20%).

After this initial population generation, a selection phase
begins. Strain energy and mass are evaluated for each can-
didate in the current population using internal stresses cal-
culated by the slientruss3d Python package (Cheng 2021).
The ”level” of each candidate is found: Candidates on the
naive Pareto frontier are set to Level 1, candidates on the
naive Pareto frontier (excluding Level 1 candidates) are set
to Level 2, etc. Parents from candidates in Level 1, or from
the lowest-level candidates in the first half of the popula-
tion (if there are not enough Level 1 candidates), are then
selected (Fig. 3). This ensures a well-distributed approxima-
tion of the Pareto frontier.

Figure 3: Example of non-domination ranking, where closer
to Pareto-optimal points (represented with darker shades)
are chosen first as parents.

During the crossover phase, single-point crossover oc-
curs. Here, one region of the truss has the structure of the
first truss, and the other region has the structure of the sec-
ond. Uniform crossover, in contrast, is undesirable because
truss point locations only make sense in the context of their
neighbors, not in isolation; uniform crossover would not pre-
serve the successful attributes of parent candidates.

Lastly, during the mutation phase, each point is trans-
lated in both dimensions according to random numbers from
a normal distribution, subject to being inside the convex
hull of the input shape. This is similar to the initial warp-
ing step, but the translation scale is much smaller. Addition-
ally, points are not deleted; because they cannot be reborn,
deleting points over time would tend towards removing ev-
ery point from all the candidates in the population.

Weighted Sum Genetic Algorithm
To validate the effectiveness of our non-domination selec-
tion for generating an approximate Pareto frontier, we com-
pared it with an otherwise equivalent genetic algorithm that
used a weighted sum of our two objectives (mass and SE)
to select parents. Because this algorithm determines one re-
sult, rather than a population of Pareto-optimal results, we
ran it several times over the range of weight vectors from
(0, 1) to (1, 0). This theoretically swept any convex regions
of the Pareto curve. As shown in the plotted evaluations of
the two methods, they generated a similar result, validating
each other. The non-domination selection method is prefer-
able, because it results in a more varied distribution along
the approxiamte Pareto frontier (Fig. 4).

Figure 4: Approximate Pareto frontier as generated by ge-
netic algorithm with non-domination and weighted sum se-
lection methods.

Results and Discussion
To test and compare the performance of the algorithms, we
chose a simple case where a distributed, downwards (com-
pressive) load was applied to the top of the box (our input
model). The approximate Pareto frontier generated by the
non-domination algorithm is plotted along with representa-
tive examples of generated designs at different points along
the frontier (Fig. 5).

Both algorithms were also plotted for comparison (Fig.
6). The replacement algorithm finds some points superior
to the genetic algorithm’s pseudo-frontier. The replacement
algorithm, however, also shows much more variable perfor-
mance: While it champions the most optimal point, it still
produces more points dominated by the genetic algorithm



Figure 5: Pareto frontier generated by the non-domination
algorithm, with several example designs highlighted and
plotted.

than not. The genetic algorithm, on the other hand, bene-
fits from being a population method and shows a frontier-
like spread of points, demonstrating a clear tradeoff between
mass and strain energy from a single run of the algorithm. In
contrast, it takes many evaluations of replacement to ensure
good points are generated. The genetic algorithm also covers
more of the tails of the curve than the replacement algorithm.

Figure 6: Evaluations of both optimization algorithms, with
objectives mass and strain energy on axes.

Both of the algorithms far outperform a standard grid in-
fill pattern one might find on a common 3D-printing soft-
ware platform (Fig. 7). This pattern was modeled in the same
node-element method as the algorithms written.

It should be noted as well that both algorithms take as in-
put multiple hyperparameters that characterize the searches:
number of iterations, weights, etc. While the hyperparame-
ters for the results above were chosen after brief experimen-
tation to put the algorithms on roughly equal footing, tuning
these further could alter both algorithms’ performance.

For physical visualization of the optimal infill patterns,
three of the designs generated via the non-domination ge-
netic algorithm were 3D printed (Fig. 8). These designs vi-
sually demonstrate how infill density can be varied by the
designer, while each part is still-mass optimized.

Figure 7: Evaluations of both optimization algorithms in
comparison to the same evaluation of a common default 3D-
printing infill.

Figure 8: Physical 3D-printed prototypes of the infill pat-
terns generated by the optimization algorithms. The leftmost
design is on the low-mass side of the Pareto curve; the two
designs to its right progressively increase mass and decrease
SE.

Figure 9: Optimal infill designs for a) angled distributed
load, b) one-sided load, c) point load, and d) twist load.

To further test the effectiveness of the genetic algorithm,
we generated sets of designs for four new load cases: an-
gled distributed load, one-side distributed load, point load,



and twist load (Fig. 9). Our intent was to determine if the
optimization process yielded part designs that were substan-
tively different depending on loading; if not, that would in-
dicate that infill patterns do not necessarily need to be load-
specific. The optimization algorithm did generate signifi-
cantly distinct results for each load case. These results in-
tuitively match their load cases. The tilted load design has
many members at the exact angle of the tilted force; the de-
sign with loading on the right side has almost all nodes on
the right side as well; the point loading design has a trian-
gular distribution of nodes starting at the force application
point and widening out at the base of the part; and the twist
loading design is roughly 180◦ rotationally symmetric (like
its loading pattern).

Conclusions and Future Work

In this paper, we have implemented an evolutionary method
and a custom method for optimizing 3D-printed infill struc-
tures given specified loading cases. We then evaluated the
algorithms on a simple 2D loading case. The results show
that truss-based optimization of custom infill patterns offers
designs that can massively outperform standard grid infill
patterns in terms of mass and strain energy (SE)–by a fac-
tor of 3 or more. We also found that our method’s outputs
substantially vary with different load cases, showing that the
optimality of a structure is highly dependent on loading and
that one-size-fits-all infill patterns will fall short in this re-
spect. Finally, we demonstrated that our evolutionary algo-
rithm can find a well-populated approximation of the Pareto
curve, allowing designers to select their desired trade-off be-
tween mass and strength.

Countless avenues remain for future work on this subject.
First and foremost, this 2D investigation should be expanded
into a software package that generates fully 3D trusses for
arbitrary 3D geometry. Optimizing the code for fast runtime
will be crucial when evaluating more complicated 3D design
problems.

The algorithms could also be made more complex. Slight
modifications could allow the algorithms to remove nodes
on bottom and top surfaces, which would allow for fewer
linking elements and therefore lighter mass. We could allow
the algorithms to vary the diameter of individual elements.
We would expect these changes, in addition to more refined
hyperparameter tuning (eg number of iterations, crossover
method, and amount of node displacement in mutation), to
help resolve discrepancies between the best performing re-
placement algorithm points and genetic algorithm generated
pseudo-frontier. Expert selection of points from the approxi-
mate Pareto frontier could also be used to identify suggested
regions for desired design applications.

Constraints could be added to enhance realism. Printabil-
ity constraints could be considered and added; for example,
3D printers cannot feasibly print diagonal truss elements
with low overhang angles, so a minimum angle of eleva-
tion for elements could be set. A constraint on compressive
elements to avoid buckling could also be added.

Group Contributions
The three-person team is comprised of two students regis-
tered for 4 units (Rio, Andrew) and one student registered
for 3 units (Ellie). The base project of the problem setup
and custom optimization was created and implemented by
the entire group, and additional time was spent by the two
students registered for 4 units on implementing the genetic
algorithm and variations. Individual contributions included
the following:

Rio:
• Ideated node/element representation of infill in 2D.
• Wrote code for infill design generation.
• Contributed to implementation of truss analysis on candi-

date designs.
• Wrote code for non-domination ranking Pareto frontier in

genetic algorithm.
• Generated and analyzed standard infill patterns for com-

parison.
• Generated plots for optimized designs on approximate

Pareto frontier.
• Edited report.

Ellie:
• Set up optimization representation (constraints, design

variables, objective function, etc.).
• Wrote code for replacement-strategy optimization algo-

rithm.
• Created comparison plots for optimization algorithms.
• Drafted report.

Andrew:
• Ideated general project topic and setup.
• Contributed to implementation of truss analysis on candi-

date designs.
• Wrote code for genetic algorithm and weighted-sum

Pareto frontier.
• Wrote code to generate printable models from trusses, and

3D printed physical versions of optimized trusses.
• Created modifications to genetic algorithm to allow

boundary point removal.
• Tested optimization code on different loading conditions.
• Edited report.

References
[cad 2015] 2015. Cadquery.
[Cheng 2021] Cheng, S.-C. 2021. slientruss3d : Python for
stable truss analysis and deep learning research.

[Garcı́a-Domı́nguez, Claver, and Sebastián 2019] Garcı́a-
Domı́nguez, A.; Claver, J.; and Sebastián, M. A. 2019.
Infill optimization for pieces obtained by 3d printing.
Procedia Manufacturing 41:193–199. 8th Manufacturing
Engineering Society International Conference, MESIC
2019, 19-21 June 2019, Madrid, Spain.



[Kochenderfer and Wheeler 2019] Kochenderfer, M. J., and
Wheeler, T. A. 2019. Algorithms for optimization. Mit
Press.

[Liu, Chen, and Yang 2022] Liu, C.-H.; Chen, Y.; and Yang,
S.-Y. 2022. Topology optimization and prototype of a
multimaterial-like compliant finger by varying the infill den-
sity in 3d printing. Soft Robotics 9(5):837–849. PMID:
34619072.

[Nordin 2018] Nordin, A. 2018. Challenges in the indus-
trial implementation of generative design systems: An ex-
ploratory study. Artificial Intelligence for Engineering De-
sign, Analysis and Manufacturing 32:16–31.

[Schmitt, Mehta, and Kim 2020] Schmitt, M.; Mehta, R. M.;
and Kim, I. Y. 2020. Additive manufacturing infill opti-
mization for automotive 3d-printed abs components. Rapid
Prototyping Journal 26:89–99.

[sci 2023] 2023. scipy.spatial.delaunay.


	Problem
	Literature Review
	Approach
	Evaluation and Generation of Candidates
	Optimization Algorithms
	Custom Iterative Replacement Algorithm
	Non-Domination Genetic Algorithm
	Weighted Sum Genetic Algorithm

	Results and Discussion
	Conclusions and Future Work
	Group Contributions

